BillionaireClubCollc
  • News
  • Notifications
  • Shop
  • Cart
  • Media
  • Advertise with Us
  • Profile
  • Groups
  • Games
  • My Story
  • Chat
  • Contact Us
home shop notifications more
Signin
  •  Profile
  •  Sign Out
Skip to content

Billionaire Club Co LLC

Believe It and You Will Achieve It

Primary Menu
  • Home
  • Politics
  • TSR
  • Anime
  • Michael Jordan vs.Lebron James
  • Crypto
  • Soccer
  • Dating
  • Airplanes
  • Forex
  • Tax
  • New Movies Coming Soon
  • Games
  • CRYPTO INSURANCE
  • Sport
  • MEMES
  • K-POP
  • AI
  • The Bahamas
  • Digital NoMad
  • Joke of the Day
  • RapVerse
  • Stocks
  • SPORTS BETTING
  • Glamour
  • Beauty
  • Travel
  • Celebrity Net Worth
  • TMZ
  • Lotto
  • COVD-19
  • Fitness
  • The Bible is REAL
  • OutDoor Activity
  • Lifestyle
  • Culture
  • Boxing
  • Food
  • LGBTQ
  • Poetry
  • Music
  • Misc
  • Open Source
  • NASA
  • Science
  • Natural & Holstict Med
  • Gardening
  • DYI
  • History
  • Art
  • Education
  • Pets
  • Aliens
  • Astrology
  • Farming and LiveStock
  • LAW
  • Fast & Furious
  • Fishing & Hunting
  • Health
  • Credit Repair
  • Grants
  • All things legal
  • Reality TV
  • Africa Today
  • China Today
  • "DUMB SHIT.."
  • CRYPTO INSURANCE

How FinRL's Pipeline Enhances Trading Performance in Real-time Markets

:::info
Authors:
(1) Xiao-Yang Liu, Hongyang Yang, Columbia University (xl2427,[email protected]);
(2) Jiechao Gao, University of Virginia ([email protected]);
(3) Christina Dan Wang (Corresponding Author), New York University Shanghai ([email protected]).
:::
Table of Links
Abstract and 1 Introduction
2 Related Works and 2.1 Deep Reinforcement Learning Algorithms
2.2 Deep Reinforcement Learning Libraries and 2.3 Deep Reinforcement Learning in Finance
3 The Proposed FinRL Framework and 3.1 Overview of FinRL Framework
3.2 Application Layer
3.3 Agent Layer
3.4 Environment Layer
3.5 Training-Testing-Trading Pipeline
4 Hands-on Tutorials and Benchmark Performance and 4.1 Backtesting Module
4.2 Baseline Strategies and Trading Metrics
4.3 Hands-on Tutorials
4.4 Use Case I: Stock Trading
4.5 Use Case II: Portfolio Allocation and 4.6 Use Case III: Cryptocurrencies Trading
5 Ecosystem of FinRL and Conclusions, and References
3.5 Training-Testing-Trading Pipeline
The "training-testing" workflow used by conventional machine learning methods falls short for financial tasks. It splits the data into training set and testing set. On the training data, users select features and tune parameters; then evaluate on the testing data. However, financial tasks will experience a simulation-to-reality gap between the testing performance and real-live market performance. Because the testing here is offline backtesting, while the users’ goal is to place orders in a real-world market.
\
FinRL employs a “training-testing-trading" pipeline to reduce the simulation-to-reality gap. We use historical data (time series) for the “training-testing" part, which is the same as conventional machine learning tasks, and this testing period is for backtesting purpose. For the “trading" part, we use live trading APIs, such as CCXT, Alpaca, or Interactive Broker, allowing users carry out trades directly in a trading system. Therefore, FinRL directly connects with live trading APIs: 1). downloads live data, 2). feeds data to the trained DRL model and obtains the trading positions, and 3). allows users to place trades.
\
Fig. 4 illustrates the “training-testing-trading” pipeline:
\
Step 1). A training window to retrain an agent.
\
Step 2). A testing window to evaluate the trained agent, while hyperparameters can be tuned iteratively.
\
Step 3). Use the trained agent to trade in a trading window.
\
Rolling window is used in the training-testing-trading pipeline, because the investors and portfolio managers need to retrain the model periodically as time goes ahead. FinRL provides flexible selections of rolling windows, such as monthly, quarterly, yearly windows, or by users’ specifications.
\
:::info
This paper is available on arxiv under CC BY 4.0 DEED license.
:::
\

Welcome to Billionaire Club Co LLC, your gateway to a brand-new social media experience! Sign up today and dive into over 10,000 fresh daily articles and videos curated just for your enjoyment. Enjoy the ad free experience, unlimited content interactions, and get that coveted blue check verification—all for just $1 a month!

Source link

Share
What's your thought on the article, write a comment
0 Comments
×

Sign In to perform this Activity

Sign in
×

Account Frozen

Your account is frozen. You can still view content but cannot interact with it.

Please go to your settings to update your account status.

Open Profile Settings

Ads

  • Original Billionaire128 Laptop Sleeve

    $ 28.00
  • Premium Billionaire128 Men’s Athletic Long Shorts

    $ 40.00
  • Billionaire128 Liquid Gold Flip-Flops

    $ 18.00
  • News Social

    • Facebook
    • Twitter
    • Facebook
    • Twitter
    Copyright © 2024 Billionaire Club Co LLC. All rights reserved