BillionaireClubCollc
  • News
  • Notifications
  • Shop
  • Cart
  • Media
  • Advertise with Us
  • Profile
  • Groups
  • Games
  • My Story
  • Chat
  • Contact Us
home shop notifications more
Signin
  •  Profile
  •  Sign Out
Skip to content

Billionaire Club Co LLC

Believe It and You Will Achieve It

Primary Menu
  • Home
  • Politics
  • TSR
  • Anime
  • Michael Jordan vs.Lebron James
  • Crypto
  • Soccer
  • Dating
  • Airplanes
  • Forex
  • Tax
  • New Movies Coming Soon
  • Games
  • CRYPTO INSURANCE
  • Sport
  • MEMES
  • K-POP
  • AI
  • The Bahamas
  • Digital NoMad
  • Joke of the Day
  • RapVerse
  • Stocks
  • SPORTS BETTING
  • Glamour
  • Beauty
  • Travel
  • Celebrity Net Worth
  • TMZ
  • Lotto
  • COVD-19
  • Fitness
  • The Bible is REAL
  • OutDoor Activity
  • Lifestyle
  • Culture
  • Boxing
  • Food
  • LGBTQ
  • Poetry
  • Music
  • Misc
  • Open Source
  • NASA
  • Science
  • Natural & Holstict Med
  • Gardening
  • DYI
  • History
  • Art
  • Education
  • Pets
  • Aliens
  • Astrology
  • Farming and LiveStock
  • LAW
  • Fast & Furious
  • Fishing & Hunting
  • Health
  • Credit Repair
  • Grants
  • All things legal
  • Reality TV
  • Africa Today
  • China Today
  • "DUMB SHIT.."
  • CRYPTO INSURANCE

Using Causal Forests to Unveil Gender Bias in Hiring

:::info
Author:
(1) Anuar Assamidanov, Department of Economics, Claremont Graduate University, 150 E 10th St, Claremont, CA 91711. (Email: [email protected]).
:::
Table of Links
Abstract
Background
Data
Methodology
Results
Discussion and Conclusion, and References
A Appendix Tables and Figures
3 Methodology
The identification strategy used in this study is Difference in Differences with Dummy Outcomes (Price and Wolfers, 2010), which focuses on coach and artist gender interaction. Specifically, we estimate the following linear probability model:
\

\

\
The regression model in the difference-in-differences framework does not capture potential heterogeneous effects across covariates. There could be a positive effect on some groups in the covariates but a negative or no effect on other groups. For example, the coaches in the initial stage of the blind audition could elicit own-gender bias, but in the later stage, opposite-gender bias. The standard regression model will provide a weighted average of effect size, even if an effect varies across a population represented by different groups. One plausible solution is to estimate heterogeneous treatment effects. Instead of just estimating one effect, I estimate a distribution of effect size for a given unit with a given set of attributes and what their impact might be. To analyze this heterogeneous effect of own-gender bias, I incorporated the first difference approach into the causal forest approach. I will discuss the performance of the proposed causal forest approach and how to apply it to my empirical example.
\
The causal forest approach is consistent and asymptotically Gaussian and provides an estimator for their asymptotic variance that allows us to construct valid confidence intervals (Athey and Wager, 2019). Causal forest utilizes a forest-based approach to calculate a similarity weight and then applies the local generalized method of moments to estimate based on a weighted set of neighbors. The authors also show that using the centered instead of the original outcome and treatment allows a forest to focus its splits on the features that affect the treatment effect instead of the primary outcome. Intuitively, a causal forest consists of regression trees (Athey and Imbens, 2016; Breiman et al., 1984), which estimate conditional average treatment effects (CATE) at the leaves of the trees instead of predicting the outcome variables.
\
I utilize a two-step approach by incorporating the first-difference approach into the causal forest approach, the similar two-step approach in the standard differencein-difference method. In the first step, I estimate the first difference, which is the change in the selection of individual contestants from a male coach to a female coach. This step teases out the systematic differences between coaches in female and male coach groups. In the second step, I use the outcome variables obtained from the first step and apply the causal forest approach for heterogeneous treatment-effect analysis. This step teases out the effect of contestant gender trends that exist in both women and men.
\
My methods rely heavily on the causal forest approach, a machine learning method that can estimate heterogeneous causal effect functions under the above assumptions. The main strength associated with the causal forest is that it provides a strategy for learning patterns of heterogeneity from the data. This method requires little researcher discretion compared to traditional subgroup analyses. For instance, one does not have to decide which cutoffs to use to analyze heterogeneity in effects along continuous covariates, nor do we require to define the functional condition of the heterogeneity; the causal forest algorithm is designed to automate this search and find the most appropriate model that best characterizes the heterogeneous effect in the data (Bonander and Svensson, 2021).
\
:::info
This paper is available on arxiv under CC 4.0 license.
:::
\

Welcome to Billionaire Club Co LLC, your gateway to a brand-new social media experience! Sign up today and dive into over 10,000 fresh daily articles and videos curated just for your enjoyment. Enjoy the ad free experience, unlimited content interactions, and get that coveted blue check verification—all for just $1 a month!

Source link

Share
What's your thought on the article, write a comment
0 Comments
×

Sign In to perform this Activity

Sign in
×

Account Frozen

Your account is frozen. You can still view content but cannot interact with it.

Please go to your settings to update your account status.

Open Profile Settings

Ads

  • Billionaire128 Liquid Gold Flag

    $ 25.00
  • Original Billionaire128 Samsung Case

    $ 15.50
  • Premium Billionaire128 Cuffed Beanie

    $ 19.50
  • News Social

    • Facebook
    • Twitter
    • Facebook
    • Twitter
    Copyright © 2024 Billionaire Club Co LLC. All rights reserved